Digital clocks: simple Boolean models can quantitatively describe circadian systems

نویسندگان

  • Ozgur E. Akman
  • Steven Watterson
  • Andrew Parton
  • Nigel Binns
  • Andrew J. Millar
  • Peter Ghazal
چکیده

The gene networks that comprise the circadian clock modulate biological function across a range of scales, from gene expression to performance and adaptive behaviour. The clock functions by generating endogenous rhythms that can be entrained to the external 24-h day-night cycle, enabling organisms to optimally time biochemical processes relative to dawn and dusk. In recent years, computational models based on differential equations have become useful tools for dissecting and quantifying the complex regulatory relationships underlying the clock's oscillatory dynamics. However, optimizing the large parameter sets characteristic of these models places intense demands on both computational and experimental resources, limiting the scope of in silico studies. Here, we develop an approach based on Boolean logic that dramatically reduces the parametrization, making the state and parameter spaces finite and tractable. We introduce efficient methods for fitting Boolean models to molecular data, successfully demonstrating their application to synthetic time courses generated by a number of established clock models, as well as experimental expression levels measured using luciferase imaging. Our results indicate that despite their relative simplicity, logic models can (i) simulate circadian oscillations with the correct, experimentally observed phase relationships among genes and (ii) flexibly entrain to light stimuli, reproducing the complex responses to variations in daylength generated by more detailed differential equation formulations. Our work also demonstrates that logic models have sufficient predictive power to identify optimal regulatory structures from experimental data. By presenting the first Boolean models of circadian circuits together with general techniques for their optimization, we hope to establish a new framework for the systematic modelling of more complex clocks, as well as other circuits with different qualitative dynamics. In particular, we anticipate that the ability of logic models to provide a computationally efficient representation of system behaviour could greatly facilitate the reverse-engineering of large-scale biochemical networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein sequestration versus Hill-type repression in circadian clock models.

Circadian (∼24 h) clocks are self-sustained endogenous oscillators with which organisms keep track of daily and seasonal time. Circadian clocks frequently rely on interlocked transcriptional-translational feedback loops to generate rhythms that are robust against intrinsic and extrinsic perturbations. To investigate the dynamics and mechanisms of the intracellular feedback loops in circadian cl...

متن کامل

Quantification of Circadian Rhythms in Single Cells

Bioluminescence techniques allow accurate monitoring of the circadian clock in single cells. We have analyzed bioluminescence data of Per gene expression in mouse SCN neurons and fibroblasts. From these data, we extracted parameters such as damping rate and noise intensity using two simple mathematical models, one describing a damped oscillator driven by noise, and one describing a self-sustain...

متن کامل

Mass spectrometry-based absolute quantification reveals rhythmic variation of mouse circadian clock proteins.

Absolute values of protein expression levels in cells are crucial information for understanding cellular biological systems. Precise quantification of proteins can be achieved by liquid chromatography (LC)-mass spectrometry (MS) analysis of enzymatic digests of proteins in the presence of isotope-labeled internal standards. Thus, development of a simple and easy way for the preparation of inter...

متن کامل

Circadian Rhythm Models

Many organisms, including animals, plants, and cyanobacteria, undergo 24 h rhythms in physiology and behavior, and these rhythms persist in constant dark conditions. Therefore, self-sustaining internal oscillators with periods of approximately 24 h must have evolved in these organisms. The operation of complex biological systems, such as these circadian oscillators, is generally too complex to ...

متن کامل

Synchronizing the Neurospora crassa circadian clock with the rhythmic environment.

The metronomic predictability of the environment has elicited strong selection pressures for the evolution of endogenous circadian clocks. Circadian clocks drive molecular and behavioural rhythms that approximate the 24 h periodicity of our environment. Found almost ubiquitously among phyla, circadian clocks allow preadaptation to rhythms concomitant with the natural cycles of the Earth. Cycles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2012